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Background - Mars 2020 Rover Mission

• One objective is to collect sample cores and set them aside on the surface in a 
“cache” for potential subsequent retrieval

• This capability is to be achieved via the Sampling and Caching Subsystem 
(SCS), which is currently under development
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https://mars.nasa.gov/mars2020/mission/overview/

Objective: Address high-priority science goals for Mars exploration



Background: Sample Caching Subsystem (SCS)
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http://sites.nationalacademies.org/cs/groups/ssbsite/documents/webpage/ssb_183291.pdf



Outline

1. Goals of this work

1. The CASAH software system

1. Supported testbeds

1. Hardware-software integration

2. Deployment, testing, and lessons learned

1. What next?
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Testbed Software Objectives

1. Enable repeatable, high throughput testing of prototype hardware 
across a suite of testbeds.

1. Provide a light-weight framework for rapid development of relevant 
algorithms that can be tested on real hardware and inform flight 
software development

1. Allow for non-developers to operate the testbeds.

1. Collect data products that can be easily parsed and archived.

1. Provide robust fault protection to avoid hardware damage.
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Software Solution

• Why not just use JPL Rover Flight Software (FSW)?
– Long development timeline due to rigorous FSW standards
– Scope does not encompass all testbed objectives
– Operational complexity is high

• Why not use a commercial solution like LabVIEW?
– LabVIEW is designed to operate a wide variety of hardware at a low level
– It does not scale well to high-level algorithms and system level capabilities
– Many components are black-boxes
– It is not relevant to FSW because it is so fundamentally different

• Our solution: Controls and Autonomy for Sample Acquisition and Handling 
(CASAH)
– Implementation of the Intelligent Robotic Systems Architecture (IRSA)
– IRSA mimics JPL Rover Flight Software in the following ways:

1. System is divided into modules, which communicate via message passing
2. Each module is ‘owned’ by a single developer
3. Operator interface to each module is explicitly defined by a command dictionary

– CASAH primarily coded in C language, which is the same as FSW
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Controls and Autonomy for Sample Acquisition and Handling 
(CASAH)

• Development began in January 2014 
by a team of three

– First deployment in May 2014

• Development has continued to 
present day, with team size growing 
to roughly five

– To date, CASAH has supported 10 
testbeds and 1400+ tests

– Test data has provided invaluable 
feedback to hardware and 
software teams

– Flight-relevant algorithms have 
been developed, iterated, and 
tested
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Context Diagram for CASAH



CASAH Components
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Supporting Testbeds with CASAH
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Top left: Arm and drill (ambient)
Top right: Arm and drill (thermal/vacuum)
Bottom left: Arm docking 
Bottom right: ACA end effector

• 10 testbeds, each with different combination 
of SCS components and distinct objectives

• How do we develop CASAH to support 
different testbeds?

– CASAH is a single repository

– Modules have testbed configuration files

– Testbed is specified at build time



CASAH Development and Hardware-Software Integration
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Phase I. Initial Development

Create Testbed Configuration

Develop / Modify Module(s) 

Test Functionality Offline

Phase II. Partial Integration

Tune Motors

Setup CASAH for Deployment

Test Low-Level Functionality

Phase III. Full Integration

Test Capabilities (e.g., coring)

Tune / Tweak Algorithms

Phase IV. Maintenance

Fix bugs

Add new features

Advance capabilities Train Operators

• This process grew 
organically

• Tight coupling of 
software-hardware 
teams before and 
during this process 
critical for success



Hardware-Software Integration: A Note About Avionics
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• CASAH supports only EtherCAT devices

• Avionics are standardized across testbeds (BlueBox)

• Resulting software is maintainable and system debugging is simplified

What is in a blue box?
• COTS motor controllers (Elmo Gold 

Whistles)
• COTS I/O modules (Beckhoffs)
• Power supply
• USB hub

CASAH development station



Results – Testing Throughput
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Number of tests ran on each SCS testbed. 
Resulting data products have proved invaluable.



Results – Algorithm Transfer to FSW

• ACA, ARM, and DRILL modules are 
now under development in FSW

• Algorithms developed and tested in 
CASAH are being re-written into FSW

• Example: DRILL Seek Surface
– Concept inspired by results seen during 

testing

– Algorithm rapidly implemented and 
rolled into testing with CASAH on all 
testbeds with coring drills

– With proven maturity, algorithm is now 
being coded into the DRILL module in 
FSW
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Example algorithm: DRILL_SEEK_SURFACE; Developed
in CASAH, currently being coded into Mars 2020 FSW



… But Nothing is Perfect
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CASAH Deployment: Select issues and resolutions



Summary and Lessons Learned

• Direct porting of code from testbed to FSW would impose harsh constraints on 
testbeds; direct porting of algorithms is a win-win

• Mimicking FSW architecture by implementing IRSA maintains relevancy
– Behavior modules in CASAH are owned by the same people writing them in FSW, and functionality is 

1:1 mapping between the two code bases

– Command dictionary and sequencing enables repeatable, high throughput testing. Generated data 
products are essential for system development.

– Message passing between modules works effectively for time-critical applications

• Early and continuous hardware-software integration is critical for system of this 
complexity 

• Keeping code clean and lightweight pays off:
– Explicitly restrict supported hardware

– Re-write application level code often

– Avoid the temptation to chase the ‘perfect’ software system which never needs modification 

Please refer to paper for full list of specific, technical lessons learned
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Looking Ahead

• For Mars 2020 SCS S/W development, focus is now Flight Software

– We have developed a system which enables us to directly test SCS FSW 
modules with Blue Boxes; allows for direct comparison to CASAH performance

– CASAH itself is now in maintenance phase

• For testbeds on new projects

– Continue to implement IRSA architecture

– Bulk of CASAH middleware will likely be reused, but application code rewritten

– Lessons learned from CASAH have been captured and will inform new 
implementation

– We continue to monitor the Robot Operating System (ROS) 2.0 for potential 
viability 
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Thank you

Questions?
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